\qquad
\qquad Date \qquad
2-8
Practice
Two-Variable Inequalities

Graph each inequality.

1. $y<x$
2. $y \geq x$
3. $y>2$
4. $y<2$
5. $x \leq 2$
6. $-2 y \leq-x-2$
7. $-2 x-y-1$
8. $y \geq 3 x-4$
9. You have a $\$ 25$ calling card. Calls made using the card within the United States cost $\$.10$ per minute while calls made from the US to France cost $\$.25$ per minute.
a. Write an inequality that relates the number of minutes x you can use for calls within the U.S. and the number of minutes y you can use for calls from the U.S. to France.
b. Graph the inequality.

Graph each absolute value inequality.
10. $y \geq|x|$
11. $y>|x+2|$
12. $y \leq|x-2|$
13. $y>|x|+2$

Write an inequality for each graph. The equation for the boundary line is given.
14. $y-2 x=4$

15. $-2 x-3 y=6$

16. $3 y=|x-3|$

\qquad
\qquad Date \qquad
2-8
Practice (continued)
Form G
Two-Variable Inequalities

Graph each inequality on a coordinate plane.

17. $4 x+2 y \leq 8$
18. $3 x \leq 5 y$
19. $y>-\frac{1}{6} x-1$
20. $y \geq\left|\frac{1}{6} x\right|-3$

Write an inequality for each graph.

21.

22.

23.

24.

25.

26.

27. Open-Ended Write an inequality that includes (0,9), ($-10,10$), $(10,-20)$, and $(-20,15)$ as solutions.
28. A salesperson sells two models of vacuum cleaners. One brand sells for $\$ 150$ each and the other sells for $\$ 200$ each. The salesperson has a weekly sales goal of at least $\$ 1800$.
a. Write an inequality relating the revenue from the vacuum cleaners to the sales goal.
b. Graph the inequality.
c. If the salesperson sold exactly six $\$ 200$ models last week, how many \$150 models did she have to sell to make her sales goal?

